Filtered by CWE-400
Total 1846 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2017-14988 1 Openexr 1 Openexr 2024-05-17 N/A
Header::readfrom in IlmImf/ImfHeader.cpp in OpenEXR 2.2.0 allows remote attackers to cause a denial of service (excessive memory allocation) via a crafted file that is accessed with the ImfOpenInputFile function in IlmImf/ImfCRgbaFile.cpp. NOTE: The maintainer and multiple third parties believe that this vulnerability isn't valid
CVE-2013-2763 1 Schneider-electric 24 Modicon M340 Bmx Noc 0401, Modicon M340 Bmx Noc 0401 Firmware, Modicon M340 Bmx Noe 0100 and 21 more 2024-05-17 N/A
The Schneider Electric M340 PLC modules allow remote attackers to cause a denial of service (resource consumption) via unspecified vectors. NOTE: the vendor reportedly disputes this issue because it "could not be duplicated" and "an attacker could not remotely exploit this observed behavior to deny PLC control functions.
CVE-2011-2906 1 Linux 1 Linux Kernel 2024-05-17 5.5 Medium
Integer signedness error in the pmcraid_ioctl_passthrough function in drivers/scsi/pmcraid.c in the Linux kernel before 3.1 might allow local users to cause a denial of service (memory consumption or memory corruption) via a negative size value in an ioctl call. NOTE: this may be a vulnerability only in unusual environments that provide a privileged program for obtaining the required file descriptor.
CVE-2007-0086 1 Apache 1 Http Server 2024-05-17 N/A
The Apache HTTP Server, when accessed through a TCP connection with a large window size, allows remote attackers to cause a denial of service (network bandwidth consumption) via a Range header that specifies multiple copies of the same fragment. NOTE: the severity of this issue has been disputed by third parties, who state that the large window size required by the attack is not normally supported or configured by the server, or that a DDoS-style attack would accomplish the same goal
CVE-2022-45044 1 Siemens 68 Siprotec 5 6md85, Siprotec 5 6md85 Firmware, Siprotec 5 6md86 and 65 more 2024-05-15 5.3 Medium
A vulnerability has been identified in SIPROTEC 5 6MD84 (CP300) (All versions < V9.50), SIPROTEC 5 6MD85 (CP200) (All versions), SIPROTEC 5 6MD85 (CP300) (All versions < V9.50), SIPROTEC 5 6MD86 (CP200) (All versions), SIPROTEC 5 6MD86 (CP300) (All versions < V9.50), SIPROTEC 5 6MD89 (CP300) (All versions < V9.64), SIPROTEC 5 6MU85 (CP300) (All versions < V9.50), SIPROTEC 5 7KE85 (CP200) (All versions), SIPROTEC 5 7KE85 (CP300) (All versions < V9.64), SIPROTEC 5 7SA82 (CP100) (All versions), SIPROTEC 5 7SA82 (CP150) (All versions < V9.50), SIPROTEC 5 7SA84 (CP200) (All versions), SIPROTEC 5 7SA86 (CP200) (All versions), SIPROTEC 5 7SA86 (CP300) (All versions < V9.50), SIPROTEC 5 7SA87 (CP200) (All versions), SIPROTEC 5 7SA87 (CP300) (All versions < V9.50), SIPROTEC 5 7SD82 (CP100) (All versions), SIPROTEC 5 7SD82 (CP150) (All versions < V9.50), SIPROTEC 5 7SD84 (CP200) (All versions), SIPROTEC 5 7SD86 (CP200) (All versions), SIPROTEC 5 7SD86 (CP300) (All versions < V9.50), SIPROTEC 5 7SD87 (CP200) (All versions), SIPROTEC 5 7SD87 (CP300) (All versions < V9.50), SIPROTEC 5 7SJ81 (CP100) (All versions < V8.89), SIPROTEC 5 7SJ81 (CP150) (All versions < V9.50), SIPROTEC 5 7SJ82 (CP100) (All versions < V8.89), SIPROTEC 5 7SJ82 (CP150) (All versions < V9.50), SIPROTEC 5 7SJ85 (CP200) (All versions), SIPROTEC 5 7SJ85 (CP300) (All versions < V9.50), SIPROTEC 5 7SJ86 (CP200) (All versions), SIPROTEC 5 7SJ86 (CP300) (All versions < V9.50), SIPROTEC 5 7SK82 (CP100) (All versions < V8.89), SIPROTEC 5 7SK82 (CP150) (All versions < V9.50), SIPROTEC 5 7SK85 (CP200) (All versions), SIPROTEC 5 7SK85 (CP300) (All versions < V9.50), SIPROTEC 5 7SL82 (CP100) (All versions), SIPROTEC 5 7SL82 (CP150) (All versions < V9.50), SIPROTEC 5 7SL86 (CP200) (All versions), SIPROTEC 5 7SL86 (CP300) (All versions < V9.50), SIPROTEC 5 7SL87 (CP200) (All versions), SIPROTEC 5 7SL87 (CP300) (All versions < V9.50), SIPROTEC 5 7SS85 (CP200) (All versions), SIPROTEC 5 7SS85 (CP300) (All versions < V9.50), SIPROTEC 5 7ST85 (CP200) (All versions), SIPROTEC 5 7ST85 (CP300) (All versions < V9.64), SIPROTEC 5 7ST86 (CP300) (All versions < V9.64), SIPROTEC 5 7SX82 (CP150) (All versions < V9.50), SIPROTEC 5 7SX85 (CP300) (All versions < V9.50), SIPROTEC 5 7UM85 (CP300) (All versions < V9.50), SIPROTEC 5 7UT82 (CP100) (All versions), SIPROTEC 5 7UT82 (CP150) (All versions < V9.50), SIPROTEC 5 7UT85 (CP200) (All versions), SIPROTEC 5 7UT85 (CP300) (All versions < V9.50), SIPROTEC 5 7UT86 (CP200) (All versions), SIPROTEC 5 7UT86 (CP300) (All versions < V9.50), SIPROTEC 5 7UT87 (CP200) (All versions), SIPROTEC 5 7UT87 (CP300) (All versions < V9.50), SIPROTEC 5 7VE85 (CP300) (All versions < V9.50), SIPROTEC 5 7VK87 (CP200) (All versions), SIPROTEC 5 7VK87 (CP300) (All versions < V9.50), SIPROTEC 5 7VU85 (CP300) (All versions < V9.50), SIPROTEC 5 Communication Module ETH-BA-2EL (All versions < V8.89 installed on CP100 devices), SIPROTEC 5 Communication Module ETH-BA-2EL (All versions < V9.50 installed on CP150 and CP300 devices), SIPROTEC 5 Communication Module ETH-BA-2EL (All versions installed on CP200 devices), SIPROTEC 5 Communication Module ETH-BB-2FO (All versions < V8.89 installed on CP100 devices), SIPROTEC 5 Communication Module ETH-BB-2FO (All versions < V9.50 installed on CP150 and CP300 devices), SIPROTEC 5 Communication Module ETH-BB-2FO (All versions installed on CP200 devices), SIPROTEC 5 Communication Module ETH-BD-2FO (All versions < V9.50), SIPROTEC 5 Compact 7SX800 (CP050) (All versions < V9.50). Affected devices do not properly restrict secure client-initiated renegotiations within the SSL and TLS protocols. This could allow an attacker to create a denial of service condition on the ports 443/tcp and 4443/tcp for the duration of the attack.
CVE-2022-38371 1 Siemens 39 Apogee Modular Building Controller, Apogee Modular Building Controller Firmware, Apogee Modular Equiment Controller and 36 more 2024-05-15 7.5 High
A vulnerability has been identified in APOGEE MBC (PPC) (BACnet) (All versions), APOGEE MBC (PPC) (P2 Ethernet) (All versions), APOGEE MEC (PPC) (BACnet) (All versions), APOGEE MEC (PPC) (P2 Ethernet) (All versions), APOGEE PXC Compact (BACnet) (All versions < V3.5.7), APOGEE PXC Compact (P2 Ethernet) (All versions < V2.8.21), APOGEE PXC Modular (BACnet) (All versions < V3.5.7), APOGEE PXC Modular (P2 Ethernet) (All versions < V2.8.21), Desigo PXC00-E.D (All versions >= V2.3), Desigo PXC00-U (All versions >= V2.3), Desigo PXC001-E.D (All versions >= V2.3), Desigo PXC100-E.D (All versions >= V2.3), Desigo PXC12-E.D (All versions >= V2.3), Desigo PXC128-U (All versions >= V2.3), Desigo PXC200-E.D (All versions >= V2.3), Desigo PXC22-E.D (All versions >= V2.3), Desigo PXC22.1-E.D (All versions >= V2.3), Desigo PXC36.1-E.D (All versions >= V2.3), Desigo PXC50-E.D (All versions >= V2.3), Desigo PXC64-U (All versions >= V2.3), Desigo PXM20-E (All versions >= V2.3), Nucleus NET for Nucleus PLUS V1 (All versions < V5.2a), Nucleus NET for Nucleus PLUS V2 (All versions < V5.4), Nucleus ReadyStart V3 V2012 (All versions < V2012.08.1), Nucleus ReadyStart V3 V2017 (All versions < V2017.02.4), Nucleus Source Code (All versions including affected FTP server), TALON TC Compact (BACnet) (All versions < V3.5.7), TALON TC Modular (BACnet) (All versions < V3.5.7). The FTP server does not properly release memory resources that were reserved for incomplete connection attempts by FTP clients. This could allow a remote attacker to generate a denial of service condition on devices that incorporate a vulnerable version of the FTP server.
CVE-2019-19300 1 Siemens 65 Ktk Ate530s, Ktk Ate530s Firmware, Sidoor Atd430w and 62 more 2024-05-15 7.5 High
A vulnerability has been identified in Development/Evaluation Kits for PROFINET IO: EK-ERTEC 200, Development/Evaluation Kits for PROFINET IO: EK-ERTEC 200P, KTK ATE530S, SIDOOR ATD430W, SIDOOR ATE530S COATED, SIDOOR ATE531S, SIMATIC ET 200pro IM154-8 PN/DP CPU (6ES7154-8AB01-0AB0), SIMATIC ET 200pro IM154-8F PN/DP CPU (6ES7154-8FB01-0AB0), SIMATIC ET 200pro IM154-8FX PN/DP CPU (6ES7154-8FX00-0AB0), SIMATIC ET 200S IM151-8 PN/DP CPU (6ES7151-8AB01-0AB0), SIMATIC ET 200S IM151-8F PN/DP CPU (6ES7151-8FB01-0AB0), SIMATIC ET 200SP Open Controller CPU 1515SP PC (incl. SIPLUS variants), SIMATIC ET 200SP Open Controller CPU 1515SP PC2 (incl. SIPLUS variants), SIMATIC ET200AL IM157-1 PN, SIMATIC ET200ecoPN, AI 8xRTD/TC, M12-L (6ES7144-6JF00-0BB0), SIMATIC ET200ecoPN, CM 4x IO-Link, M12-L (6ES7148-6JE00-0BB0), SIMATIC ET200ecoPN, CM 8x IO-Link, M12-L (6ES7148-6JG00-0BB0), SIMATIC ET200ecoPN, CM 8x IO-Link, M12-L (6ES7148-6JJ00-0BB0), SIMATIC ET200ecoPN, DI 16x24VDC, M12-L (6ES7141-6BH00-0BB0), SIMATIC ET200ecoPN, DI 8x24VDC, M12-L (6ES7141-6BG00-0BB0), SIMATIC ET200ecoPN, DIQ 16x24VDC/2A, M12-L (6ES7143-6BH00-0BB0), SIMATIC ET200ecoPN, DQ 8x24VDC/0,5A, M12-L (6ES7142-6BG00-0BB0), SIMATIC ET200ecoPN, DQ 8x24VDC/2A, M12-L (6ES7142-6BR00-0BB0), SIMATIC ET200MP IM155-5 PN HF (incl. SIPLUS variants), SIMATIC ET200SP IM155-6 MF HF, SIMATIC ET200SP IM155-6 PN HA (incl. SIPLUS variants), SIMATIC ET200SP IM155-6 PN HF (incl. SIPLUS variants), SIMATIC ET200SP IM155-6 PN/2 HF (incl. SIPLUS variants), SIMATIC ET200SP IM155-6 PN/3 HF (incl. SIPLUS variants), SIMATIC MICRO-DRIVE PDC, SIMATIC PN/MF Coupler (6ES7158-3MU10-0XA0), SIMATIC PN/PN Coupler (6ES7158-3AD10-0XA0), SIMATIC S7-1200 CPU family (incl. SIPLUS variants), SIMATIC S7-1500 CPU family (incl. related ET200 CPUs and SIPLUS variants), SIMATIC S7-1500 Software Controller, SIMATIC S7-300 CPU 314C-2 PN/DP (6ES7314-6EH04-0AB0), SIMATIC S7-300 CPU 315-2 PN/DP (6ES7315-2EH14-0AB0), SIMATIC S7-300 CPU 315F-2 PN/DP (6ES7315-2FJ14-0AB0), SIMATIC S7-300 CPU 315T-3 PN/DP (6ES7315-7TJ10-0AB0), SIMATIC S7-300 CPU 317-2 PN/DP (6ES7317-2EK14-0AB0), SIMATIC S7-300 CPU 317F-2 PN/DP (6ES7317-2FK14-0AB0), SIMATIC S7-300 CPU 317T-3 PN/DP (6ES7317-7TK10-0AB0), SIMATIC S7-300 CPU 317TF-3 PN/DP (6ES7317-7UL10-0AB0), SIMATIC S7-300 CPU 319-3 PN/DP (6ES7318-3EL01-0AB0), SIMATIC S7-300 CPU 319F-3 PN/DP (6ES7318-3FL01-0AB0), SIMATIC S7-400 H V6 CPU family and below (incl. SIPLUS variants), SIMATIC S7-400 PN/DP V7 CPU family (incl. SIPLUS variants), SIMATIC S7-410 V10 CPU family (incl. SIPLUS variants), SIMATIC S7-410 V8 CPU family (incl. SIPLUS variants), SIMATIC TDC CP51M1, SIMATIC TDC CPU555, SIMATIC WinAC RTX 2010 (6ES7671-0RC08-0YA0), SIMATIC WinAC RTX F 2010 (6ES7671-1RC08-0YA0), SINAMICS S/G Control Unit w. PROFINET, SIPLUS ET 200S IM151-8 PN/DP CPU (6AG1151-8AB01-7AB0), SIPLUS ET 200S IM151-8F PN/DP CPU (6AG1151-8FB01-2AB0), SIPLUS NET PN/PN Coupler (6AG2158-3AD10-4XA0), SIPLUS S7-300 CPU 314C-2 PN/DP (6AG1314-6EH04-7AB0), SIPLUS S7-300 CPU 315-2 PN/DP (6AG1315-2EH14-7AB0), SIPLUS S7-300 CPU 315F-2 PN/DP (6AG1315-2FJ14-2AB0), SIPLUS S7-300 CPU 317-2 PN/DP (6AG1317-2EK14-7AB0), SIPLUS S7-300 CPU 317F-2 PN/DP (6AG1317-2FK14-2AB0). The Interniche-based TCP Stack can be forced to make very expensive calls for every incoming packet which can lead to a denial of service.
CVE-2023-6688 2024-05-14 6.5 Medium
An issue has been discovered in GitLab CE/EE affecting all versions starting from 16.11 prior to 16.11.2. A problem with the processing logic for Google Chat Messages integration may lead to a regular expression DoS attack on the server.
CVE-2024-3789 2024-05-14 6.5 Medium
Uncontrolled resource consumption vulnerability in White Bear Solutions WBSAirback, version 21.02.04. This vulnerability could allow an attacker to send multiple command injection payloads to influence the amount of resources consumed.
CVE-2024-22201 2024-05-01 7.5 High
Jetty is a Java based web server and servlet engine. An HTTP/2 SSL connection that is established and TCP congested will be leaked when it times out. An attacker can cause many connections to end up in this state, and the server may run out of file descriptors, eventually causing the server to stop accepting new connections from valid clients. The vulnerability is patched in 9.4.54, 10.0.20, 11.0.20, and 12.0.6.
CVE-2024-32984 2024-05-01 7.5 High
Yamux is a stream multiplexer over reliable, ordered connections such as TCP/IP. The Rust implementation of the Yamux stream multiplexer uses a vector for pending frames. This vector is not bounded in length. Every time the Yamux protocol requires sending of a new frame, this frame gets appended to this vector. This can be remotely triggered in a number of ways, for example by: 1. Opening a new libp2p Identify stream. This causes the node to send its Identify message. Of course, every other protocol that causes the sending of data also works. The larger the response, the more data is enqueued. 2. Sending a Yamux Ping frame. This causes a Pong frame to be enqueued. Under normal circumstances, this queue of pending frames would be drained once they’re sent out over the network. However, the attacker can use TCP’s receive window mechanism to prevent the victim from sending out any data: By not reading from the TCP connection, the receive window will never be increased, and the victim won’t be able to send out any new data (this is how TCP implements backpressure). Once this happens, Yamux’s queue of pending frames will start growing indefinitely. The queue will only be drained once the underlying TCP connection is closed. An attacker can cause a remote node to run out of memory, which will result in the corresponding process getting terminated by the operating system.
CVE-2023-32665 1 Gnome 1 Glib 2024-04-26 5.5 Medium
A flaw was found in GLib. GVariant deserialization is vulnerable to an exponential blowup issue where a crafted GVariant can cause excessive processing, leading to denial of service.
CVE-2023-6596 2024-04-25 7.5 High
An incomplete fix was shipped for the Rapid Reset (CVE-2023-44487/CVE-2023-39325) vulnerability for an OpenShift Containers.
CVE-2023-6277 3 Fedoraproject, Libtiff, Redhat 3 Fedora, Libtiff, Enterprise Linux 2024-04-25 6.5 Medium
An out-of-memory flaw was found in libtiff. Passing a crafted tiff file to TIFFOpen() API may allow a remote attacker to cause a denial of service via a craft input with size smaller than 379 KB.
CVE-2023-5870 2 Postgresql, Redhat 16 Postgresql, Codeready Linux Builder Eus, Codeready Linux Builder Eus For Power Little Endian Eus and 13 more 2024-04-25 4.4 Medium
A flaw was found in PostgreSQL involving the pg_cancel_backend role that signals background workers, including the logical replication launcher, autovacuum workers, and the autovacuum launcher. Successful exploitation requires a non-core extension with a less-resilient background worker and would affect that specific background worker only. This issue may allow a remote high privileged user to launch a denial of service (DoS) attack.
CVE-2022-40735 1 Diffie-hellman Key Exchange Project 1 Diffie-hellman Key Exchange 2024-04-23 7.5 High
The Diffie-Hellman Key Agreement Protocol allows use of long exponents that arguably make certain calculations unnecessarily expensive, because the 1996 van Oorschot and Wiener paper found that "(appropriately) short exponents" can be used when there are adequate subgroup constraints, and these short exponents can lead to less expensive calculations than for long exponents. This issue is different from CVE-2002-20001 because it is based on an observation about exponent size, rather than an observation about numbers that are not public keys. The specific situations in which calculation expense would constitute a server-side vulnerability depend on the protocol (e.g., TLS, SSH, or IKE) and the DHE implementation details. In general, there might be an availability concern because of server-side resource consumption from DHE modular-exponentiation calculations. Finally, it is possible for an attacker to exploit this vulnerability and CVE-2002-20001 together.
CVE-2002-20001 6 Balasys, F5, Hpe and 3 more 49 Dheater, Big-ip Access Policy Manager, Big-ip Advanced Firewall Manager and 46 more 2024-04-23 7.5 High
The Diffie-Hellman Key Agreement Protocol allows remote attackers (from the client side) to send arbitrary numbers that are actually not public keys, and trigger expensive server-side DHE modular-exponentiation calculations, aka a D(HE)at or D(HE)ater attack. The client needs very little CPU resources and network bandwidth. The attack may be more disruptive in cases where a client can require a server to select its largest supported key size. The basic attack scenario is that the client must claim that it can only communicate with DHE, and the server must be configured to allow DHE.
CVE-2023-26597 1 Honeywell 2 C300, C300 Firmware 2024-04-22 7.5 High
Controller DoS due to buffer overflow in the handling of a specially crafted message received by the controller. See Honeywell Security Notification for recommendations on upgrading and versioning. See Honeywell Security Notification for recommendations on upgrading and versioning.
CVE-2024-31994 2024-04-22 6.5 Medium
Mealie is a self hosted recipe manager and meal planner. Prior to 1.4.0, an attacker can point the image request to an arbitrarily large file. Mealie will attempt to retrieve this file in whole. If it can be retrieved, it may be stored on the file system in whole (leading to possible disk consumption), however the more likely scenario given resource limitations is that the container will OOM during file retrieval if the target file size is greater than the allocated memory of the container. At best this can be used to force the container to infinitely restart due to OOM (if so configured in `docker-compose.yml), or at worst this can be used to force the Mealie container to crash and remain offline. In the event that the file can be retrieved, the lack of rate limiting on this endpoint also permits an attacker to generate ongoing requests to any target of their choice, potentially contributing to an external-facing DoS attack. This vulnerability is fixed in 1.4.0.
CVE-2024-25978 2024-04-19 7.5 High
Insufficient file size checks resulted in a denial of service risk in the file picker's unzip functionality.