Filtered by vendor Nodejs Subscriptions
Total 161 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2013-2882 4 Debian, Google, Nodejs and 1 more 4 Debian Linux, Chrome, Node.js and 1 more 2023-11-07 N/A
Google V8, as used in Google Chrome before 28.0.1500.95, allows remote attackers to cause a denial of service or possibly have unspecified other impact via vectors that leverage "type confusion."
CVE-2023-32559 1 Nodejs 1 Node.js 2023-10-24 7.5 High
A privilege escalation vulnerability exists in the experimental policy mechanism in all active release lines: 16.x, 18.x and, 20.x. The use of the deprecated API `process.binding()` can bypass the policy mechanism by requiring internal modules and eventually take advantage of `process.binding('spawn_sync')` run arbitrary code, outside of the limits defined in a `policy.json` file. Please note that at the time this CVE was issued, the policy is an experimental feature of Node.js.
CVE-2023-32003 2 Fedoraproject, Nodejs 2 Fedora, Node.js 2023-09-21 5.3 Medium
`fs.mkdtemp()` and `fs.mkdtempSync()` can be used to bypass the permission model check using a path traversal attack. This flaw arises from a missing check in the fs.mkdtemp() API and the impact is a malicious actor could create an arbitrary directory. This vulnerability affects all users using the experimental permission model in Node.js 20. Please note that at the time this CVE was issued, the permission model is an experimental feature of Node.js.
CVE-2023-32006 2 Fedoraproject, Nodejs 2 Fedora, Node.js 2023-09-15 8.8 High
The use of `module.constructor.createRequire()` can bypass the policy mechanism and require modules outside of the policy.json definition for a given module. This vulnerability affects all users using the experimental policy mechanism in all active release lines: 16.x, 18.x, and, 20.x. Please note that at the time this CVE was issued, the policy is an experimental feature of Node.js.
CVE-2023-32004 2 Fedoraproject, Nodejs 2 Fedora, Node.js 2023-09-15 8.8 High
A vulnerability has been discovered in Node.js version 20, specifically within the experimental permission model. This flaw relates to improper handling of Buffers in file system APIs causing a traversal path to bypass when verifying file permissions. This vulnerability affects all users using the experimental permission model in Node.js 20. Please note that at the time this CVE was issued, the permission model is an experimental feature of Node.js.
CVE-2023-32002 1 Nodejs 1 Node.js 2023-09-15 9.8 Critical
The use of `Module._load()` can bypass the policy mechanism and require modules outside of the policy.json definition for a given module. This vulnerability affects all users using the experimental policy mechanism in all active release lines: 16.x, 18.x and, 20.x. Please note that at the time this CVE was issued, the policy is an experimental feature of Node.js.
CVE-2017-1000381 3 C-ares, C-ares Project, Nodejs 3 C-ares, C-ares, Node.js 2023-09-15 7.5 High
The c-ares function `ares_parse_naptr_reply()`, which is used for parsing NAPTR responses, could be triggered to read memory outside of the given input buffer if the passed in DNS response packet was crafted in a particular way.
CVE-2022-3602 4 Fedoraproject, Netapp, Nodejs and 1 more 4 Fedora, Clustered Data Ontap, Node.js and 1 more 2023-08-08 7.5 High
A buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed the malicious certificate or for the application to continue certificate verification despite failure to construct a path to a trusted issuer. An attacker can craft a malicious email address to overflow four attacker-controlled bytes on the stack. This buffer overflow could result in a crash (causing a denial of service) or potentially remote code execution. Many platforms implement stack overflow protections which would mitigate against the risk of remote code execution. The risk may be further mitigated based on stack layout for any given platform/compiler. Pre-announcements of CVE-2022-3602 described this issue as CRITICAL. Further analysis based on some of the mitigating factors described above have led this to be downgraded to HIGH. Users are still encouraged to upgrade to a new version as soon as possible. In a TLS client, this can be triggered by connecting to a malicious server. In a TLS server, this can be triggered if the server requests client authentication and a malicious client connects. Fixed in OpenSSL 3.0.7 (Affected 3.0.0,3.0.1,3.0.2,3.0.3,3.0.4,3.0.5,3.0.6).
CVE-2022-32222 2 Nodejs, Siemens 2 Node.js, Sinec Ins 2023-07-24 5.3 Medium
A cryptographic vulnerability exists on Node.js on linux in versions of 18.x prior to 18.40.0 which allowed a default path for openssl.cnf that might be accessible under some circumstances to a non-admin user instead of /etc/ssl as was the case in versions prior to the upgrade to OpenSSL 3.
CVE-2022-32214 4 Debian, Llhttp, Nodejs and 1 more 4 Debian Linux, Llhttp, Node.js and 1 more 2023-07-19 6.5 Medium
The llhttp parser <v14.20.1, <v16.17.1 and <v18.9.1 in the http module in Node.js does not strictly use the CRLF sequence to delimit HTTP requests. This can lead to HTTP Request Smuggling (HRS).
CVE-2022-35256 4 Debian, Llhttp, Nodejs and 1 more 4 Debian Linux, Llhttp, Node.js and 1 more 2023-05-12 6.5 Medium
The llhttp parser in the http module in Node v18.7.0 does not correctly handle header fields that are not terminated with CLRF. This may result in HTTP Request Smuggling.
CVE-2023-23920 2 Debian, Nodejs 2 Debian Linux, Node.js 2023-05-03 4.2 Medium
An untrusted search path vulnerability exists in Node.js. <19.6.1, <18.14.1, <16.19.1, and <14.21.3 that could allow an attacker to search and potentially load ICU data when running with elevated privileges.
CVE-2022-43548 2 Debian, Nodejs 2 Debian Linux, Node.js 2023-04-27 8.1 High
A OS Command Injection vulnerability exists in Node.js versions <14.21.1, <16.18.1, <18.12.1, <19.0.1 due to an insufficient IsAllowedHost check that can easily be bypassed because IsIPAddress does not properly check if an IP address is invalid before making DBS requests allowing rebinding attacks.The fix for this issue in https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32212 was incomplete and this new CVE is to complete the fix.
CVE-2022-35949 1 Nodejs 1 Undici 2023-03-28 9.8 Critical
undici is an HTTP/1.1 client, written from scratch for Node.js.`undici` is vulnerable to SSRF (Server-side Request Forgery) when an application takes in **user input** into the `path/pathname` option of `undici.request`. If a user specifies a URL such as `http://127.0.0.1` or `//127.0.0.1` ```js const undici = require("undici") undici.request({origin: "http://example.com", pathname: "//127.0.0.1"}) ``` Instead of processing the request as `http://example.org//127.0.0.1` (or `http://example.org/http://127.0.0.1` when `http://127.0.0.1 is used`), it actually processes the request as `http://127.0.0.1/` and sends it to `http://127.0.0.1`. If a developer passes in user input into `path` parameter of `undici.request`, it can result in an _SSRF_ as they will assume that the hostname cannot change, when in actual fact it can change because the specified path parameter is combined with the base URL. This issue was fixed in `undici@5.8.1`. The best workaround is to validate user input before passing it to the `undici.request` call.
CVE-2022-35948 1 Nodejs 1 Undici 2023-03-28 5.3 Medium
undici is an HTTP/1.1 client, written from scratch for Node.js.`=< undici@5.8.0` users are vulnerable to _CRLF Injection_ on headers when using unsanitized input as request headers, more specifically, inside the `content-type` header. Example: ``` import { request } from 'undici' const unsanitizedContentTypeInput = 'application/json\r\n\r\nGET /foo2 HTTP/1.1' await request('http://localhost:3000, { method: 'GET', headers: { 'content-type': unsanitizedContentTypeInput }, }) ``` The above snippet will perform two requests in a single `request` API call: 1) `http://localhost:3000/` 2) `http://localhost:3000/foo2` This issue was patched in Undici v5.8.1. Sanitize input when sending content-type headers using user input as a workaround.
CVE-2023-23919 1 Nodejs 1 Node.js 2023-03-16 7.5 High
A cryptographic vulnerability exists in Node.js <19.2.0, <18.14.1, <16.19.1, <14.21.3 that in some cases did does not clear the OpenSSL error stack after operations that may set it. This may lead to false positive errors during subsequent cryptographic operations that happen to be on the same thread. This in turn could be used to cause a denial of service.
CVE-2023-23918 1 Nodejs 1 Node.js 2023-03-16 7.5 High
A privilege escalation vulnerability exists in Node.js <19.6.1, <18.14.1, <16.19.1 and <14.21.3 that made it possible to bypass the experimental Permissions (https://nodejs.org/api/permissions.html) feature in Node.js and access non authorized modules by using process.mainModule.require(). This only affects users who had enabled the experimental permissions option with --experimental-policy.
CVE-2022-35255 3 Debian, Nodejs, Siemens 3 Debian Linux, Node.js, Sinec Ins 2023-03-01 9.1 Critical
A weak randomness in WebCrypto keygen vulnerability exists in Node.js 18 due to a change with EntropySource() in SecretKeyGenTraits::DoKeyGen() in src/crypto/crypto_keygen.cc. There are two problems with this: 1) It does not check the return value, it assumes EntropySource() always succeeds, but it can (and sometimes will) fail. 2) The random data returned byEntropySource() may not be cryptographically strong and therefore not suitable as keying material.
CVE-2023-23936 1 Nodejs 2 Node.js, Undici 2023-02-24 5.4 Medium
Undici is an HTTP/1.1 client for Node.js. Starting with version 2.0.0 and prior to version 5.19.1, the undici library does not protect `host` HTTP header from CRLF injection vulnerabilities. This issue is patched in Undici v5.19.1. As a workaround, sanitize the `headers.host` string before passing to undici.
CVE-2023-24807 1 Nodejs 1 Undici 2023-02-24 7.5 High
Undici is an HTTP/1.1 client for Node.js. Prior to version 5.19.1, the `Headers.set()` and `Headers.append()` methods are vulnerable to Regular Expression Denial of Service (ReDoS) attacks when untrusted values are passed into the functions. This is due to the inefficient regular expression used to normalize the values in the `headerValueNormalize()` utility function. This vulnerability was patched in v5.19.1. No known workarounds are available.