Filtered by vendor Xen
Subscriptions
Total
469 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2022-42314 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | 6.5 Medium |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | ||||
CVE-2022-42313 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | 6.5 Medium |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | ||||
CVE-2022-42312 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | 6.5 Medium |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | ||||
CVE-2022-42311 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | 6.5 Medium |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | ||||
CVE-2022-40982 | 5 Debian, Intel, Netapp and 2 more | 1052 Debian Linux, Celeron 5205u, Celeron 5205u Firmware and 1049 more | 2023-11-07 | 6.5 Medium |
Information exposure through microarchitectural state after transient execution in certain vector execution units for some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access. | ||||
CVE-2022-33745 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | 8.8 High |
insufficient TLB flush for x86 PV guests in shadow mode For migration as well as to work around kernels unaware of L1TF (see XSA-273), PV guests may be run in shadow paging mode. To address XSA-401, code was moved inside a function in Xen. This code movement missed a variable changing meaning / value between old and new code positions. The now wrong use of the variable did lead to a wrong TLB flush condition, omitting flushes where such are necessary. | ||||
CVE-2022-33742 | 4 Debian, Fedoraproject, Linux and 1 more | 4 Debian Linux, Fedora, Linux Kernel and 1 more | 2023-11-07 | 7.1 High |
Linux disk/nic frontends data leaks T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Linux Block and Network PV device frontends don't zero memory regions before sharing them with the backend (CVE-2022-26365, CVE-2022-33740). Additionally the granularity of the grant table doesn't allow sharing less than a 4K page, leading to unrelated data residing in the same 4K page as data shared with a backend being accessible by such backend (CVE-2022-33741, CVE-2022-33742). | ||||
CVE-2022-33741 | 4 Debian, Fedoraproject, Linux and 1 more | 4 Debian Linux, Fedora, Linux Kernel and 1 more | 2023-11-07 | 7.1 High |
Linux disk/nic frontends data leaks T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Linux Block and Network PV device frontends don't zero memory regions before sharing them with the backend (CVE-2022-26365, CVE-2022-33740). Additionally the granularity of the grant table doesn't allow sharing less than a 4K page, leading to unrelated data residing in the same 4K page as data shared with a backend being accessible by such backend (CVE-2022-33741, CVE-2022-33742). | ||||
CVE-2022-33740 | 4 Debian, Fedoraproject, Linux and 1 more | 4 Debian Linux, Fedora, Linux Kernel and 1 more | 2023-11-07 | 7.1 High |
Linux disk/nic frontends data leaks T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Linux Block and Network PV device frontends don't zero memory regions before sharing them with the backend (CVE-2022-26365, CVE-2022-33740). Additionally the granularity of the grant table doesn't allow sharing less than a 4K page, leading to unrelated data residing in the same 4K page as data shared with a backend being accessible by such backend (CVE-2022-33741, CVE-2022-33742). | ||||
CVE-2022-26365 | 4 Debian, Fedoraproject, Linux and 1 more | 4 Debian Linux, Fedora, Linux Kernel and 1 more | 2023-11-07 | 7.1 High |
Linux disk/nic frontends data leaks T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Linux Block and Network PV device frontends don't zero memory regions before sharing them with the backend (CVE-2022-26365, CVE-2022-33740). Additionally the granularity of the grant table doesn't allow sharing less than a 4K page, leading to unrelated data residing in the same 4K page as data shared with a backend being accessible by such backend (CVE-2022-33741, CVE-2022-33742). | ||||
CVE-2022-26364 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | 6.7 Medium |
x86 pv: Insufficient care with non-coherent mappings T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Xen maintains a type reference count for pages, in addition to a regular reference count. This scheme is used to maintain invariants required for Xen's safety, e.g. PV guests may not have direct writeable access to pagetables; updates need auditing by Xen. Unfortunately, Xen's safety logic doesn't account for CPU-induced cache non-coherency; cases where the CPU can cause the content of the cache to be different to the content in main memory. In such cases, Xen's safety logic can incorrectly conclude that the contents of a page is safe. | ||||
CVE-2022-26363 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | 6.7 Medium |
x86 pv: Insufficient care with non-coherent mappings T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Xen maintains a type reference count for pages, in addition to a regular reference count. This scheme is used to maintain invariants required for Xen's safety, e.g. PV guests may not have direct writeable access to pagetables; updates need auditing by Xen. Unfortunately, Xen's safety logic doesn't account for CPU-induced cache non-coherency; cases where the CPU can cause the content of the cache to be different to the content in main memory. In such cases, Xen's safety logic can incorrectly conclude that the contents of a page is safe. | ||||
CVE-2022-26362 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | 6.4 Medium |
x86 pv: Race condition in typeref acquisition Xen maintains a type reference count for pages, in addition to a regular reference count. This scheme is used to maintain invariants required for Xen's safety, e.g. PV guests may not have direct writeable access to pagetables; updates need auditing by Xen. Unfortunately, the logic for acquiring a type reference has a race condition, whereby a safely TLB flush is issued too early and creates a window where the guest can re-establish the read/write mapping before writeability is prohibited. | ||||
CVE-2022-23035 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | 4.6 Medium |
Insufficient cleanup of passed-through device IRQs The management of IRQs associated with physical devices exposed to x86 HVM guests involves an iterative operation in particular when cleaning up after the guest's use of the device. In the case where an interrupt is not quiescent yet at the time this cleanup gets invoked, the cleanup attempt may be scheduled to be retried. When multiple interrupts are involved, this scheduling of a retry may get erroneously skipped. At the same time pointers may get cleared (resulting in a de-reference of NULL) and freed (resulting in a use-after-free), while other code would continue to assume them to be valid. | ||||
CVE-2022-23034 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | 5.5 Medium |
A PV guest could DoS Xen while unmapping a grant To address XSA-380, reference counting was introduced for grant mappings for the case where a PV guest would have the IOMMU enabled. PV guests can request two forms of mappings. When both are in use for any individual mapping, unmapping of such a mapping can be requested in two steps. The reference count for such a mapping would then mistakenly be decremented twice. Underflow of the counters gets detected, resulting in the triggering of a hypervisor bug check. | ||||
CVE-2022-23033 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2023-11-07 | 7.8 High |
arm: guest_physmap_remove_page not removing the p2m mappings The functions to remove one or more entries from a guest p2m pagetable on Arm (p2m_remove_mapping, guest_physmap_remove_page, and p2m_set_entry with mfn set to INVALID_MFN) do not actually clear the pagetable entry if the entry doesn't have the valid bit set. It is possible to have a valid pagetable entry without the valid bit set when a guest operating system uses set/way cache maintenance instructions. For instance, a guest issuing a set/way cache maintenance instruction, then calling the XENMEM_decrease_reservation hypercall to give back memory pages to Xen, might be able to retain access to those pages even after Xen started reusing them for other purposes. | ||||
CVE-2022-21166 | 5 Debian, Fedoraproject, Intel and 2 more | 7 Debian Linux, Fedora, Sgx Dcap and 4 more | 2023-11-07 | 5.5 Medium |
Incomplete cleanup in specific special register write operations for some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access. | ||||
CVE-2022-21125 | 5 Debian, Fedoraproject, Intel and 2 more | 7 Debian Linux, Fedora, Sgx Dcap and 4 more | 2023-11-07 | 5.5 Medium |
Incomplete cleanup of microarchitectural fill buffers on some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access. | ||||
CVE-2022-21123 | 5 Debian, Fedoraproject, Intel and 2 more | 7 Debian Linux, Fedora, Sgx Dcap and 4 more | 2023-11-07 | 5.5 Medium |
Incomplete cleanup of multi-core shared buffers for some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access. | ||||
CVE-2021-3308 | 2 Fedoraproject, Xen | 2 Fedora, Xen | 2023-11-07 | 5.5 Medium |
An issue was discovered in Xen 4.12.3 through 4.12.4 and 4.13.1 through 4.14.x. An x86 HVM guest with PCI pass through devices can force the allocation of all IDT vectors on the system by rebooting itself with MSI or MSI-X capabilities enabled and entries setup. Such reboots will leak any vectors used by the MSI(-X) entries that the guest might had enabled, and hence will lead to vector exhaustion on the system, not allowing further PCI pass through devices to work properly. HVM guests with PCI pass through devices can mount a Denial of Service (DoS) attack affecting the pass through of PCI devices to other guests or the hardware domain. In the latter case, this would affect the entire host. |